Structural investigation into physiological DNA phosphorothioate modification
نویسندگان
چکیده
DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CG(PX)GCCGCCGA) with its complementary strand d(TCGGCG(PX)GCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn't change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive.
منابع مشابه
Phosphorothioation: An Unusual Post-Replicative Modification on the DNA Backbone
DNA molecules are polymers composed of basic repeating subunits of deoxyribonucleotides, which consist of the deoxyribose sugar, phosphate groups, and a nitrogenous base. They appear to fulfill all requirements necessary to maintain the genetic function of DNA. The five elements of nitrogen, phosphorus, carbon, hydrogen, and oxygen had been regarded as the canonical composition of DNA until the...
متن کاملPhosphorothioation of DNA in bacteria by dnd genes.
Modifications of the canonical structures of DNA and RNA play critical roles in cell physiology, DNA replication, transcription and translation in all organisms. We now report that bacterial dnd gene clusters incorporate sulfur into the DNA backbone as a sequence-selective, stereospecific phosphorothioate modification. To our knowledge, unlike any other DNA or RNA modification systems, DNA phos...
متن کاملIn Vivo Mutational Characterization of DndE Involved in DNA Phosphorothioate Modification
DNA phosphorothioate (PT) modification is a recently identified epigenetic modification that occurs in the sugar-phosphate backbone of prokaryotic DNA. Previous studies have demonstrated that DNA PT modification is governed by the five DndABCDE proteins in a sequence-selective and RP stereo-specific manner. Bacteria may have acquired this physiological modification along with dndFGH as a restri...
متن کاملPhosphorothioate DNA as an antioxidant in bacteria
Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance...
متن کاملDNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks
The modification of DNA by phosphorothioate (PT) occurs when the non-bridging oxygen in the sugar-phosphate backbone of DNA is replaced with sulfur. This DNA backbone modification was recently discovered and is governed by the dndABCDE genes in a diverse group of bacteria and archaea. However, the biological function of DNA PT modifications is poorly understood. In this study, we employed the R...
متن کامل